

Application of Computers

Advanced Functions for Data Analysis in Excel and Creating Advanced Chats in Excel

PhD Bojan Prlinčević

AASKM

What are Advanced Functions?

Advanced Excel functions are powerful tools that enable complex data analysis, manipulation, and decision-making. They go beyond basic arithmetic to perform lookups, logical tests, statistical analysis, and data transformation—essential skills for engineering data analysis.

Why Advanced Functions Matter in Engineering:

- Automation: Reduce manual calculations and minimize errors
- Complex Analysis: Perform sophisticated data analysis quickly
- Data Management: Handle large datasets efficiently
- Decision Support: Create dynamic models and what-if scenarios
- Professional Reports: Generate automated, updateable analysis
- Time Efficiency: Complete in minutes what would take hours manually

Categories of Advanced Functions:

1. Logical Functions:

- Make decisions based on conditions
- Examples: IF, AND, OR, NOT, nested IF
- Use: Pass/fail criteria, conditional calculations, error handling

2. Lookup and Reference Functions:

- Find and retrieve data from tables
- Examples: VLOOKUP, HLOOKUP, INDEX, MATCH
- Use: Component specifications, data retrieval, cross-referencing

3. Statistical Functions:

- Analyze data distributions and trends
- Examples: AVERAGE, MEDIAN, STDEV, COUNT, MAX, MIN
- Use: Measurement analysis, quality control, data validation

4. Text Functions:

- Manipulate and format text data
- Examples: CONCATENATE, LEFT, RIGHT, MID, TEXT
- Use: Data formatting, report generation, label creation

5. Date and Time Functions:

- Work with temporal data
- Examples: TODAY, NOW, DATE, DATEDIF
- Use: Project timelines, age calculations, scheduling

6. Mathematical Functions:

- Advanced calculations beyond basic operators
- Examples: ROUND, SUMIF, COUNTIF, ABS, POWER
- Use: Conditional summation, rounding, absolute values

Engineering Applications:

- Component Selection: Use VLOOKUP to find resistor values from standard tables
- Quality Control: Use IF functions to flag measurements outside tolerance
- Statistical Analysis: Use AVERAGE, STDEV to analyze measurement precision
- Data Validation: Use logical functions to check data integrity
- Automated Reports: Combine functions to create dynamic analysis sheets Course Objectives:

Master advanced Excel functions to perform sophisticated data analysis, automate calculations, create intelligent spreadsheets, and develop advanced visualizations for engineering applications.

Learning Approach:

- Understand function syntax and arguments
- Practice with engineering-relevant examples
- Combine multiple functions for complex tasks
- Apply to real-world engineering scenarios
- Integrate with advanced charting techniques

IF Function:

Performs logical test and returns different values based on TRUE or FALSE result.

Syntax:

=IF(logical_test, value_if_true, value_if_false)

Arguments:

- logical_test: Condition to evaluate (e.g., A1>5)
- value_if_true: Value returned if condition is TRUE
- value_if_false: Value returned if condition is FALSE

Example 1 - Pass/Fail Evaluation:

- =IF(B2>=60, "PASS", "FAIL")
- If score in B2 is 60 or higher, returns "PASS"
- Otherwise returns "FAIL"

Example 2 - Voltage Tolerance Check:

- =IF(ABS(A2-5)<=0.1, "Within Tolerance", "Out of Tolerance")
- Checks if voltage in A2 is within ±0.1V of 5V target
- Returns appropriate status message

Example 3 - Conditional Calculation:

=IF(C2>0, B2/C2, "N/A")

- Calculates B2/C2 only if C2 is positive
- Avoids division by zero error

AND Function:

Returns TRUE only if ALL conditions are TRUE.

Syntax:

=AND(logical1, logical2, ...)

Example - Multiple Criteria Check:

=AND(A2>=4.9, A2<=5.1, B2="Active")

- Returns TRUE only if voltage is 4.9-5.1V AND status is "Active"
- All conditions must be met

OR Function:

Returns TRUE if ANY condition is TRUE.

Syntax:

=OR(logical1, logical2, ...)

Example - Error Detection:

=OR(A2<0, A2>10, B2="Error")

- Returns TRUE if voltage is negative, above 10V, OR status is "Error"
- Any single condition triggers TRUE

Combining IF with AND/OR:

Example 1 - Complex Pass/Fail:

=IF(AND(A2>=4.9, A2<=5.1, B2<100), "PASS", "FAIL")

- PASS only if voltage is 4.9-5.1V AND current is below 100mA
- Both conditions required

Example 2 - Warning System:

=IF(OR(A2>5.5, B2>150), "WARNING", "Normal")

- WARNING if voltage exceeds 5.5V OR current exceeds 150mA
- Either condition triggers warning

Example 3 - Multi-Level Grading:

=IF(A2>=90, "Excellent", IF(A2>=75, "Good", IF(A2>=60, "Pass", "Fail")))

- Nested IF statements for multiple grade levels
- Evaluates from highest to lowest

Engineering Application - Component Testing:

Scenario: Test voltage regulator output

• Target: 5.0V ± 0.05V

Maximum current: 200mA

• Temperature: Below 80°C

Formula:

=IF(AND(ABS(B2-5)<=0.05, C2<=200, D2<80), "PASS", "FAIL")

Result: Component passes only if ALL three criteria are met

Best Practices:

- Use parentheses to clarify complex logic
- Test formulas with known values
- Consider all possible outcomes
- Use cell references instead of hardcoded values for flexibility
- Add comments to explain complex logic

Common Errors:

- Incorrect comparison operators (= vs ==)
- Missing parentheses in nested functions
- Circular logic
- Not handling edge cases (zero, negative, blank cells)

Nested IF Functions:

Multiple IF functions inside each other for complex multi-condition logic.

Syntax:

=IF(test1, value1, IF(test2, value2, IF(test3, value3, default_value)))

Example 1 - Grade Classification:

- =IF(A2>=90, "A", IF(A2>=80, "B", IF(A2>=70, "C", IF(A2>=60, "D", "F"))))
- Evaluates score against multiple thresholds
- Returns appropriate letter grade
- Maximum 64 nested levels in Excel (practical limit ~7)

Example 2 - Resistor Tolerance Classification:

- =IF(B2<=1, "Precision", IF(B2<=5, "Standard", IF(B2<=10, "General", "Low Quality")))
- Classifies resistors by tolerance percentage
- Multiple categories based on tolerance value

Example 3 - Power Rating Selection:

=IF(A2<=0.125, "1/8W", IF(A2<=0.25, "1/4W", IF(A2<=0.5, "1/2W", IF(A2<=1, "1W", "2W+"))))

- Selects appropriate resistor power rating based on calculated power
- Ensures adequate safety margin

Limitations of Nested IF:

- Difficult to read and maintain beyond 3-4 levels
- Easy to make errors in parentheses matching
- Hard to modify or expand
- Consider alternatives for complex logic

Alternative: IFS Function (Excel 2019+):

Cleaner syntax for multiple conditions.

Syntax:

=IFS(test1, value1, test2, value2, test3, value3, ...)

Example - Grade Classification (IFS):

- =IFS(A2>=90, "A", A2>=80, "B", A2>=70, "C", A2>=60, "D", A2<60, "F")
- Cleaner than nested IF
- Evaluates conditions in order
- Returns value for first TRUE condition

NOT Function:

Reverses logical value (TRUE becomes FALSE, FALSE becomes TRUE).

Syntax:

=NOT(logical)

Example 1 - Inverse Condition:

- =IF(NOT(A2="Active"), "Check Status", "OK")
- Triggers action when status is NOT "Active"

Example 2 - Combined with AND:

- =IF(AND(A2>0, NOT(B2="Error")), "Valid", "Invalid")
- Valid if A2 is positive AND B2 is NOT "Error"

IFERROR Function:

Handles errors gracefully without displaying error messages.

Syntax:

=IFERROR(value, value_if_error)

Example 1 - Division with Error Handling:

- =IFERROR(A2/B2, 0)
- Calculates A2/B2
- Returns 0 if division by zero or other error
- Prevents #DIV/0! error display

Example 2 - VLOOKUP with Error Handling:

- =IFERROR(VLOOKUP(A2, Table1, 2, FALSE), "Not Found")
- Looks up value in table
- Returns "Not Found" instead of #N/A error

IFNA Function:

Specifically handles #N/A errors (common in lookup functions).

Syntax:

=IFNA(value, value_if_na)

Example:

- =IFNA(VLOOKUP(A2, Table1, 2, FALSE), "No Match")
- Returns "No Match" only for #N/A errors
- Other errors still display normally

Engineering Application - Measurement Validation:

Scenario: Validate sensor readings with multiple criteria

- Range: 0-10V
- Precision: ±0.01V
- Status must be "Active"
- No error flags

Formula:

```
=IF(AND(A2>=0, A2<=10, ABS(A2-B2)<=0.01, C2="Active", NOT(D2="Error")), "Valid", "Invalid")
```

Complex Example - Component Selection Logic:

Requirements:

- Voltage rating > 1.5 × operating voltage
- Current rating > 1.2 × operating current
- Temperature rating > maximum ambient + 20°C
- Cost < budget

Formula:

```
=IF(AND(B2>A2*1.5, D2>C2*1.2, F2>E2+20, G2<H2), "Suitable", IF(OR(B2<=A2*1.5, D2<=C2*1.2), "Insufficient Rating", IF(F2<=E2+20, "Temperature Issue", "Over Budget")))
```

Result: Provides specific reason for rejection if component doesn't meet criteria

Best Practices:

- Limit nesting to 3-4 levels for readability
- Use IFS for multiple sequential conditions
- Always include IFERROR for formulas that might error
- Document complex logic with comments
- Test all possible paths through logic
- Consider using helper columns to break down complex formulas

VLOOKUP (Vertical Lookup):

Searches for value in first column of table and returns value from specified column in same row.

Syntax:

=VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])

Arguments:

- lookup_value: Value to search for (e.g., component ID)
- table_array: Table range to search in (e.g., A2:D100)
- col_index_num: Column number to return value from (1 = first column)
- range_lookup: TRUE/FALSE or 1/0
 - FALSE (0): Exact match (recommended for most cases)
 - TRUE (1): Approximate match (requires sorted data)

How VLOOKUP Works:

- Searches for lookup_value in first column of table_array
- 2. Finds matching row
- 3. Returns value from col_index_num column in that row
- 4. Returns #N/A error if no match found

Formula to find resistance of R102:

=VLOOKUP("R102", A2:D6, 3, FALSE)

- Searches for "R102" in column A
- Returns value from column 3 (Resistance)
- Result: 4700

Example 1 - Component Specification

Lookup:

Table (A1:D6):

Part No	Description	Resistance (Ω)	Tolerance (%)
R101	Resistor	1000	5
R102	Resistor	4700	1
R103	Resistor	10000	5
C201	Capacitor	100μF	10
C202	Capacitor	10μF	20

Example 2 - Dynamic Lookup with Cell Reference:

- =VLOOKUP(F2, A2:D6, 3, FALSE)
- Looks up part number entered in cell F2
- Returns corresponding resistance
- Formula updates automatically when F2 changes

Example 3 - Multiple Lookups:

Description: =VLOOKUP(F2, A2:D6, 2, FALSE)

Resistance: =VLOOKUP(F2, A2:D6, 3, FALSE)

Tolerance: =VLOOKUP(F2, A2:D6, 4, FALSE)

- Retrieves multiple specifications for same part
- Each formula returns different column

Exact Match vs. Approximate Match:

Exact Match (FALSE):

- Finds exact match only
- Returns #N/A if no exact match
- Table does NOT need to be sorted

- Use for: Part numbers, IDs, names, discrete values
- Recommended for most engineering applications Approximate Match (TRUE):
- Finds closest match less than or equal to lookup value
- Table MUST be sorted in ascending order (first column)
- Use for: Grade ranges, tax brackets, tiered pricing
- Returns largest value ≤ lookup_value

Formula:

- =VLOOKUP(7, A2:B6, 2, TRUE)
- Looks up 7A (not exact match in table)
- Finds largest value ≤ 7, which is 5A
- Returns corresponding wire gauge: 20 AWG

Example - Approximate Match (Wire Gauge Selection): Table (sorted by current):

Current (A)	Wire Gauge
0	24 AWG
3	22 AWG
5	20 AWG
10	18 AWG
15	16 AWG

Common VLOOKUP Errors:

#N/A Error:

- Lookup value not found in first column
- Solution: Check spelling, data type (text vs. number), use IFERROR

#REF! Error:

- col_index_num exceeds number of columns in table_array
- Solution: Verify column index is within table range

#VALUE! Error:

- col_index_num is less than 1
- Solution: Use positive integer for column index

Wrong Result:

- range_lookup is TRUE but table not sorted
- Solution: Sort table or use FALSE for exact match

Engineering Application - Standard Component Selection:

Standard Values
Table (E12 series):

Scenario: Select standard resistor value closest to calculated value

Formula (with error handling):

=IFERROR(VLOOKUP(A2, StandardValues, 2, TRUE), "Custom Value Required")

- Finds closest standard value to calculated resistance in A2
- Returns component code
- Handles cases where no standard value is suitable

Value (Ω)	Code
10	10R
12	12R
15	15R
18	18R
22	22R
27	27R
33	33R
39	39R
47	47R
56	56R
68	68R
82	82R

Best Practices:

- Always use FALSE for exact match unless specifically need approximate
- Use absolute references (\$) for table_array when copying formulas
- Combine with IFERROR to handle missing values gracefully
- Ensure lookup column (first column) contains unique values
- Consider INDEX-MATCH as more flexible alternative

HLOOKUP (Horizontal Lookup):

Searches for value in first row of table and returns value from specified row.

Syntax:

=HLOOKUP(lookup_value, table_array, row_index_num, [range_lookup])

Difference from VLOOKUP:

- Searches horizontally (across rows) instead of vertically (down columns)
- Lookup value must be in first ROW of table
- Returns value from specified ROW number

Example - Temperature Coefficient Lookup:

Table (A1:E3):

Material	Copper	Aluminum	Silver	Gold
Resistivity (Ω·m)	1.68E-8	2.82E-8	1.59E-8	2.44E-8
Temp Coeff (1/°C)	0.00393	0.00429	0.00380	0.00340

Formula to find temperature coefficient of Aluminum:

- =HLOOKUP("Aluminum", A1:E3, 3, FALSE)
- Searches for "Aluminum" in row 1
- Returns value from row 3 (Temp Coeff)
- Result: 0.00429

When to Use HLOOKUP:

- Data organized horizontally (categories in rows)
- Time series data with dates in first row
- Less common than VLOOKUP in typical engineering applications

INDEX Function:

Returns value from specific cell in range based on row and column numbers.

Syntax:

=INDEX(array, row_num, [column_num])

Arguments:

- array: Range to retrieve value from
- row_num: Row number within array
- column_num: Column number within array (optional if single column)

Example 1 - Direct Cell Reference:

- =INDEX(A2:D10, 3, 2)
- Returns value from 3rd row, 2nd column of range A2:D10
- Equivalent to cell B4

Example 2 - Single Column:

- =INDEX(C2:C10, 5)
- Returns value from 5th row of column C
- Equivalent to cell C6

MATCH Function:

Returns position of value in range (not the value itself).

Syntax:

=MATCH(lookup_value, lookup_array, [match_type])

Arguments:

- lookup_value: Value to find
- lookup_array: Range to search in (single row or column)
- match_type:
 - 0: Exact match (recommended)
 - 1: Largest value ≤ lookup_value (requires sorted ascending)
 - -1: Smallest value ≥ lookup_value (requires sorted descending)

Example - Find Position:

- =MATCH("R102", A2:A10, 0)
- Searches for "R102" in range A2:A10
- Returns position number (e.g., 3 if found in A4)
- Returns #N/A if not found

INDEX-MATCH Combination:

Powerful alternative to VLOOKUP with more flexibility.

Syntax:

=INDEX(return_range, MATCH(lookup_value, lookup_range, 0))

Advantages over VLOOKUP:

- Can look up values to the LEFT of lookup column
- No need to count columns (more robust when columns added/removed)
- Can search both rows and columns dynamically
- Faster performance with large datasets
- More flexible for complex lookups

Example 1 - Basic INDEX-MATCH: Table:

Part No	Description	Resistance (Ω)	Tolerance (%)
R101	Resistor	1000	5
R102	Resistor	4700	1
R103	Resistor	10000	5

Formula to find resistance of R102:

=INDEX(C2:C4, MATCH("R102", A2:A4, 0))

- MATCH finds position of "R102" in
- A2:A4 (returns 2)
- INDEX returns value from 2nd position in C2:C4 (returns 4700)

Example 2 - Left Lookup (impossible with VLOOKUP):

- =INDEX(A2:A4, MATCH(4700, C2:C4, 0))
- Finds part number (column A)
 based on resistance value
 (column C)
- Looks LEFT from lookup column
- VLOOKUP cannot do this

Example 3 - Two-Way Lookup (Row and Column): Table:

	Week 1	Week 2	Week 3
Voltage	5.02	5.01	5.03
Current	98	102	99
Power	0.49	0.51	0.50

Formula to find Power in Week 2:

=INDEX(B2:D4, MATCH("Power", A2:A4, 0), MATCH("Week 2", B1:D1, 0))

- First MATCH finds row (Power = row 3)
- Second MATCH finds column (Week 2 = column 2)
- INDEX returns intersection value: 0.51

Engineering Application - Component Database Lookup:

Scenario: Large component database with specifications

Formula with error handling:

=IFERROR(INDEX(Specifications, MATCH(PartNumber, PartList, 0), MATCH(Parameter, HeaderRow, 0)), "Not Available")

Benefits:

- Flexible: Works regardless of column order
- Robust: Adding columns doesn't break formula
- Bidirectional: Can look up in any direction
- Dynamic: Both part and parameter can be variables

Best Practices:

- Use INDEX-MATCH instead of VLOOKUP for complex lookups
- Always use match_type = 0 for exact match
- Combine with IFERROR for error handling
- Use named ranges for clarity (e.g., PartList, Specifications)
- Test with known values to verify correct operation

Basic Statistical Functions:

AVERAGE Function:

Calculates arithmetic mean of values.

Syntax:

=AVERAGE(number1, [number2], ...)

Example:

- =AVERAGE(A2:A10)
- Calculates average of values in A2:A10
- Ignores text and blank cells
- Use for: Central tendency, typical value

MEDIAN Function:

Returns middle value when data is sorted.

Syntax:

=MEDIAN(number1, [number2], ...)

Example:

- =MEDIAN(A2:A10)
- Returns middle value (5th value if 9 data points)
- Less affected by outliers than AVERAGE
- Use for: Skewed distributions, outlier-prone data

MODE.SNGL Function:

Returns most frequently occurring value.

Syntax:

=MODE.SNGL(number1, [number2], ...)

Example:

- =MODE.SNGL(A2:A10)
- Returns most common value
- Returns #N/A if no value repeats
- Use for: Discrete data, finding typical value

Standard Deviation Functions:

STDEV.S (Sample Standard Deviation):

Calculates standard deviation for sample data.

Syntax:

=STDEV.S(number1, [number2], ...)

Example:

=STDEV.S(A2:A10)

- Measures spread/variability in data
- Uses n-1 denominator (sample)
- Use for: Experimental measurements (most common in engineering)

STDEV.P (Population Standard Deviation):

Calculates standard deviation for entire population.

Syntax:

=STDEV.P(number1, [number2], ...)

- Uses n denominator (population)
- Use for: Complete datasets, known populations

Variance Functions:

VAR.S and **VAR.P**:

Calculate variance (square of standard deviation).

Example:

=VAR.S(A2:A10)

- Variance = (Standard Deviation)²
- Same sample vs. population distinction

Count Functions:

COUNT:

Counts cells containing numbers.

Syntax:

=COUNT(value1, [value2], ...)

Example:

=COUNT(A2:A10)

- Counts only numeric values
- Ignores text, blank cells, logical values

COUNTA:

Counts non-empty cells.

Syntax:

=COUNTA(value1, [value2], ...)

Example:

=COUNTA(A2:A10)

- Counts cells with any content (numbers, text, errors)
- Use for: Counting entries regardless of type

COUNTBLANK:

Counts empty cells.

Syntax:

=COUNTBLANK(range)

Example:

=COUNTBLANK(A2:A10)

- Counts blank cells only
- Use for: Finding missing data

COUNTIF:

Counts cells meeting specific criteria.

Syntax:

=COUNTIF(range, criteria)

Examples:

COUNTIFS:

Counts cells meeting multiple criteria.

Syntax:

=COUNTIFS(criteria_range1, criteria1, [criteria_range2, criteria2], ...)

Example:

- =COUNTIFS(A2:A10, ">=4.9", A2:A10, "<=5.1", B2:B10, "PASS")
- Counts rows where voltage is 4.9-5.1V AND status is "PASS"
- All criteria must be met

MIN and MAX Functions:

MIN:

Returns smallest value.

Syntax:

=MIN(number1, [number2], ...)

MAX:

Returns largest value.

Syntax:

=MAX(number1, [number2], ...)

Examples:

=MIN(A2:A10) 'Minimum voltage

=MAX(A2:A10) 'Maximum voltage

SUMIF and SUMIFS:

SUMIF:

Sums values meeting criteria.

Syntax:

=SUMIF(range, criteria, [sum_range])

Example:

=SUMIF(B2:B10, "PASS", C2:C10)

Sums values in C2:C10 where corresponding B cell is "PASS"

SUMIFS:

Sums values meeting multiple criteria.

Syntax:

=SUMIFS(sum_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...)

Example:

=SUMIFS(D2:D10, B2:B10, ">=4.9", C2:C10, "<=100")

Sums power where voltage ≥4.9V AND current ≤100mA

AVERAGEIF and AVERAGEIFS:

Similar to SUMIF/SUMIFS but calculates average.

Example:

=AVERAGEIF(B2:B10, ">5", A2:A10)

Average of A2:A10 where corresponding B value >5

Engineering Application - Measurement Analysis:

Scenario: Analyze 20 voltage measurements from power supply test

Data in A2:A21:

5.02, 5.01, 4.99, 5.03, 5.00, 4.98, 5.02, 5.01, 4.99, 5.00,

5.01, 5.02, 4.98, 5.03, 5.00, 4.99, 5.01, 5.02, 5.00, 4.98

Analysis Formulas:

Mean: =AVERAGE(A2:A21) 'Result: 5.005V

Median: =MEDIAN(A2:A21) 'Result: 5.005V

Std Deviation: =STDEV.S(A2:A21) 'Result: 0.016V

Minimum: =MIN(A2:A21) 'Result: 4.98V

Maximum: =MAX(A2:A21) 'Result: 5.03V

Range: =MAX(A2:A21)-MIN(A2:A21) 'Result: 0.05V

Count: =COUNT(A2:A21) 'Result: 20

Within Tolerance: =COUNTIFS(A2:A21,">=4.95",A2:A21,"<=5.05") 'Result: 20

Percent in Spec: =COUNTIFS(A2:A21,">=4.95",A2:A21,"<=5.05")/COUNT(A2:A21)*100 'Result: 100

Interpretation:

- Mean = 5.005V (very close to 5.0V target)
- Std Dev = 0.016V (low variability, good precision)
- All measurements within ±1% tolerance
- Power supply meets specifications

Quality Control Application:

=IF(AND(AVERAGE(A2:A21)>=4.95, AVERAGE(A2:A21)<=5.05, STDEV.S(A2:A21)<=0.05), "PASS", "FAIL")

• Automated pass/fail based on mean and standard deviation criteria

SUMPRODUCT Function:

Multiplies corresponding elements in arrays and returns sum of products.

Syntax:

=SUMPRODUCT(array1, [array2], [array3], ...)

Basic Example:

=SUMPRODUCT(A2:A5, B2:B5)

Calculates: (A2×B2) + (A3×B3) + (A4×B4) + (A5×B5)

Engineering Application - Total Power Calculation:

Data:

Voltage (V)	Current (A)	
5.0	0.5	
3.3	1.2	
12.0	0.3	
5.0	0.8	

Formula:

=SUMPRODUCT(A2:A5, B2:B5)

• Calculates total power: $(5.0 \times 0.5) + (3.3 \times 1.2) + (12.0 \times 0.3) + (5.0 \times 0.8)$

• Result: 2.5 + 3.96 + 3.6 + 4.0 = 14.06W

Conditional SUMPRODUCT:

Use with logical conditions for advanced filtering.

Example - Conditional Sum:

=SUMPRODUCT((A2:A10>5)*(B2:B10))

- Sums B values only where corresponding A value >5
- (A2:A10>5) creates array of TRUE/FALSE (1/0)
- Multiplying by B values includes only matching rows

Example - Multiple Conditions:

=SUMPRODUCT((A2:A10>=4.9)*(A2:A10<=5.1)*(B2:B10))

- Sums B values where A is between 4.9 and 5.1
- Multiple conditions combined with multiplication (AND logic)

MAXIFS and MINIFS Functions:

Find maximum or minimum value meeting criteria.

MAXIFS Syntax:

=MAXIFS(max_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...)

Example:

- =MAXIFS(C2:C10, A2:A10, ">=4.9", B2:B10, "PASS")
- Returns maximum value from C2:C10 where A≥4.9 AND B="PASS"

MINIFS Syntax:

=MINIFS(min_range, criteria_range1, criteria1, ...)

Example:

- =MINIFS(C2:C10, A2:A10, ">=4.9", B2:B10, "PASS")
- Returns minimum value from C2:C10 meeting criteria

LARGE and SMALL Functions:

Return nth largest or smallest value.

LARGE Syntax:

- =LARGE(array, k)
- k=1: Largest value (same as MAX)
- k=2: Second largest value
- k=3: Third largest value, etc.

Example:

=LARGE(A2:A10, 2)

• Returns second highest value in range

SMALL Syntax:

=SMALL(array, k)

• k=1: Smallest value (same as MIN)

• k=2: Second smallest value

RANK Function:

Returns rank of number in list.

Syntax:

=RANK(number, ref, [order])

Arguments:

• number: Value to rank

• ref: Array of values

• order: 0 = descending (1=highest), 1 = ascending (1=lowest)

Example:

=RANK(A2, \$A\$2:\$A\$10, 0)

- Returns rank of A2 value among all values in A2:A10
- 1 = highest value, 2 = second highest, etc.
- Use absolute reference (\$) for ref when copying formula

PERCENTILE Function:

Returns value at specified percentile.

Syntax:

=PERCENTILE.INC(array, k)

- k: Percentile value (0 to 1)
- 0.5 = 50th percentile (median)
- 0.95 = 95th percentile

Example:

=PERCENTILE.INC(A2:A100, 0.95)

- Returns value below which 95% of data falls
- Use for: Specification limits, outlier detection

QUARTILE Function:

Returns quartile value (25th, 50th, 75th percentile).

Syntax:

- =QUARTILE.INC(array, quart)
- quart: 0=min, 1=25th, 2=50th (median), 3=75th, 4=max

Example:

- =QUARTILE.INC(A2:A100, 1) 'First quartile (25th percentile)
- =QUARTILE.INC(A2:A100, 3) 'Third quartile (75th percentile)

Engineering Application - Statistical Process Control:

Scenario: Monitor production measurements, identify outliers

Data: 100 resistance measurements in A2:A101

Analysis:

Mean: =AVERAGE(A2:A101) Std Dev: =STDEV.S(A2:A101)

Upper Control: =AVERAGE(A2:A101) + 3*STDEV.S(A2:A101) Lower Control: =AVERAGE(A2:A101) - 3*STDEV.S(A2:A101)

Out of Control: =COUNTIFS(A2:A101,">"&(AVERAGE(A2:A101)+3*STDEV.S(A2:A101))) +

COUNTIFS(A2:A101,"<"&(AVERAGE(A2:A101)-3*STDEV.S(A2:A101)))

95th Percentile: =PERCENTILE.INC(A2:A101, 0.95)

Outlier Detection Formula (in column B):

=IF(OR(A2>AVERAGE(\$A\$2:\$A\$101)+3*STDEV.S(\$A\$2:\$A\$101), A2<AVERAGE(\$A\$2:\$A\$101)-3*STDEV.S(\$A\$2:\$A\$101)), "Outlier", "Normal")

Best Practices:

- Use SUMPRODUCT for complex conditional calculations
- Combine statistical functions for comprehensive analysis
- Use absolute references (\$) when copying formulas with fixed ranges
- Document criteria and thresholds clearly
- Validate results with known test data

What are Advanced Charts?

Advanced charts go beyond basic column, line, and pie charts to provide sophisticated data visualization capabilities. They include combination charts, secondary axes, specialized chart types, and advanced formatting techniques essential for complex engineering data presentation.

Why Advanced Charts Matter:

Complex Data Relationships:

- Display multiple data types simultaneously (e.g., voltage and current)
- Show data with different scales on same chart
- Visualize correlations and patterns
- Compare actual vs. target values

Professional Communication:

- Publication-quality graphics for technical papers
- Executive dashboards with multiple metrics
- Comprehensive analysis in single visualization
- Enhanced clarity for complex datasets

Engineering Applications:

- Dual-axis charts: Voltage and current on same time axis
- Combo charts: Actual values (columns) vs. targets (line)
- Scatter with trendlines: Correlation analysis, calibration curves
- Dynamic charts: Update automatically with new data
- Sparklines: Compact trend visualization in cells

Advanced Chart Types:

1. Combo Charts:

- Combine different chart types (e.g., column + line)
- Show related data with different visualization needs
- Example: Monthly sales (columns) with cumulative total (line)

2. Secondary Axis Charts:

- Two value axes with different scales
- Compare data with vastly different magnitudes
- Example: Voltage (0-10V) and power (0-100W) vs. time

3. Advanced Scatter Charts:

- Multiple series with different markers
- Trendlines with equations and R² values
- Logarithmic scales for wide-range data
- Example: I-V characteristics of multiple diodes

4. Waterfall Charts:

- Show cumulative effect of sequential values
- Visualize how initial value is affected by positive/negative changes
- Example: Budget breakdown showing additions and subtractions

5. Box and Whisker Plots:

- Display statistical distribution (quartiles, median, outliers)
- Compare distributions across categories
- Example: Measurement variability across different test methods

6. Histogram:

- Show frequency distribution of continuous data
- Identify data patterns and distributions
- Example: Distribution of resistor values in production batch

7. Pareto Charts:

- Combination of column and line chart
- Show individual values and cumulative percentage
- Example: Defect analysis (80/20 rule)

8. Sparklines:

- Miniature charts within cells
- Show trends without full chart
- Example: Quick visualization of weekly measurements

Advanced Formatting Techniques:

Multiple Data Series:

- Different colors, markers, and line styles
- Custom formatting for each series
- Strategic use of emphasis

Error Bars:

- Display measurement uncertainty
- Standard deviation, standard error, or custom values
- Essential for scientific data presentation

Trendlines and Equations:

- Linear, polynomial, exponential, logarithmic
- Display equation and R² value
- Forecast future values

Reference Lines:

- Horizontal/vertical lines for targets or limits
- Shaded regions for acceptable ranges
- Specification limits visualization

Dynamic Elements:

- Charts that update with data changes
- Named ranges for flexibility
- Interactive elements

Course Objectives:

- Master combination and dual-axis charts
- Create scatter plots with advanced analysis
- Apply appropriate chart types for complex data
- Format charts professionally for engineering documentation
- Implement dynamic and interactive visualizations

Key Principle:

Choose chart complexity appropriate to your message. Advanced charts should clarify, not confuse. Use advanced features only when they add genuine value to data understanding.

Combination (Combo) Charts:

Combine two or more chart types in single chart to display related data with different visualization needs.

Common Combinations:

- Column + Line
- Bar + Line
- Area + Line
- Stacked Column + Line

When to Use Combo Charts:

Different Data Types:

- Actual values (columns) vs. target or average (line)
- Individual measurements (columns) vs. cumulative total (line)
- Discrete categories (columns) vs. continuous trend (line)

Emphasis:

- Highlight one data series differently
- Draw attention to comparison or relationship
- Show context for primary data

Creating Combo Chart:

Method 1 - Insert Combo Chart:

- 1. Select data range including all series
- 2. Insert tab \rightarrow Charts group \rightarrow Insert Combo Chart
- 3. Choose preset combo type:
 - Clustered Column Line
 - Clustered Column Line on Secondary Axis
- 4. Chart appears with combination of types

Method 2 - Change Existing Chart:

- 1. Create standard chart (e.g., column chart with multiple series)
- 2. Select chart
- 3. Chart Design tab → Change Chart Type
- 4. Choose Combo from chart type list
- 5. For each series, select chart type from dropdown
- 6. Check "Secondary Axis" box for series needing different scale
- 7. Click OK

Method 3 - Change Individual Series:

- 1. Select specific data series in chart (click on bars/line)
- 2. Right-click → Change Series Chart Type
- 3. Choose new chart type for that series
- 4. Repeat for other series as needed

Example - Actual vs. Target: Data:

Month	Actual Output	Target
Jan	95	100
Feb	102	100
Mar	98	100
Apr	105	100

Chart:

- Actual Output: Columns (blue)
- Target: Line with markers (red)
- Clearly shows performance relative to target

Secondary Axis:

Used when data series have vastly different scales or units.

When to Use Secondary Axis:

Different Scales:

- One series: 0-10 range
- Another series: 0-1000 range
- Without secondary axis, small values appear flat

Different Units:

- Voltage (V) and Power (W)
- Temperature (°C) and Pressure (kPa)
- Current (mA) and Resistance (kΩ)

Example - Actual vs. Target: Data:

Month	Actual Output	Target
Jan	95	100
Feb	102	100
Mar	98	100
Apr	105	100

Chart:

- Actual Output: Columns (blue)
- Target: Line with markers (red)
- Clearly shows performance relative to target

Secondary Axis:

Used when data series have vastly different scales or units.

When to Use Secondary Axis:

Different Scales:

- One series: 0-10 range
- Another series: 0-1000 range
- Without secondary axis, small values appear flat

Different Units:

- Voltage (V) and Power (W)
- Temperature (°C) and Pressure (kPa)
- Current (mA) and Resistance (kΩ)

Creating Secondary Axis:

Method 1 - During Chart Creation:

- 1. Insert → Combo Chart → Clustered Column Line on Secondary Axis
- 2. Excel automatically assigns line series to secondary axis

Method 2 - Add to Existing Chart:

- 1. Select data series to move to secondary axis
- 2. Right-click → Format Data Series
- Series Options → Secondary Axis (radio button)
- 4. Secondary axis appears on right side

Method 3 - Change Chart Type:

- 1. Chart Design → Change Chart Type → Combo
- 2. Check "Secondary Axis" box for appropriate series

Formatting Secondary Axis:

- 1. Click secondary axis (right side) to select
- 2. Right-click \rightarrow Format Axis
- 3. Set bounds, units, number format independently
- 4. Add secondary axis title: Chart
 Design → Add Chart Element →
 Axis Titles → Secondary Vertical

Example - Voltage and Power vs. Time: Data:

Time (s)	Voltage (V)	Power (W)
0	0.0	0.0
1	3.2	10.2
2	4.3	18.5
3	4.7	22.1
4	4.9	24.0

Chart Setup:

- Voltage: Line chart on primary axis (left, 0-5V scale)
- Power: Line chart on secondary axis (right, 0-25W scale)
- Both series visible and readable
- Different colors and markers for distinction

Best Practices:

Visual Clarity:

- Use different chart types for primary and secondary series (e.g., column + line)
- Distinct colors for each axis (match axis color to series color)
- Clear axis titles with units
- Legend identifying each series

Axis Formatting:

- Set appropriate min/max bounds for each axis
- Align zero points if meaningful
- Use consistent intervals
- Consider logarithmic scale if needed

Avoid Confusion:

- Limit to 2-3 data series total
- Don't use secondary axis unless necessary
- Clearly label which series uses which axis
- Consider separate charts if relationship unclear

Engineering Application - RC Circuit Analysis:

Scenario: Plot voltage and current during capacitor charging

Data:

• Time: 0-5 seconds

Voltage: 0-5V (exponential rise)

Current: 500-0 μA (exponential decay)

Chart:

• Primary axis (left): Voltage (V), 0-5V scale, blue line

• Secondary axis (right): Current (μA), 0-500μA scale, red line

• X-axis: Time (s)

Shows inverse relationship between voltage and current

Formula Integration:

Voltage calculated: =5*(1-EXP(-A2/1))

Current calculated: =500*EXP(-A2/1)

• Chart updates automatically with time constant changes

Common Mistakes to Avoid:

- Using secondary axis when not needed (creates confusion)
- Mismatched axis scales causing misleading visual comparisons
- Too many series (>3) making chart cluttered
- Unclear labeling of which series uses which axis
- Inconsistent formatting between primary and secondary elements

Advanced Scatter Chart Techniques:

Multiple Data Series:

Display multiple relationships on same scatter chart for comparison.

Creating Multi-Series Scatter Chart:

- 1. Organize data with X-values in first column, multiple Y-series in subsequent columns
- 2. Select entire data range including headers
- 3. Insert → Scatter Chart
- 4. Each Y-column becomes separate series with unique color/marker

Chart:

- Three series (Diode A, B, C) with different markers
- Shows comparative I-V characteristics
- Legend identifies each diode

Example - Diode Comparison: Data:

Voltage (V)	Diode A (mA)	Diode B (mA)	Diode C (mA)
0.0	0.00	0.00	0.00
0.4	0.05	0.08	0.03
0.6	1.20	1.80	0.90
0.7	5.50	7.20	4.10
0.8	15.30	18.50	12.20

Formatting Multiple Series:

- 1. Select individual series (click on data points)
- 2. Format Data Series pane
- 3. Customize for each series:
 - Marker: Different shapes (circle, square, diamond, triangle)
 - Size: 6-10 points for visibility
 - **Fill:** Distinct colors
 - Line: Different styles (solid, dashed, dotted) or no line

Advanced Trendline Options:

Adding Multiple Trendlines:

- Each series can have its own trendline
- Different trendline types for different series
- Compare fit quality across series

Trendline Types Review:

- 1. Linear (y = mx + b):
- Straight line
- Best for: Constant rate of change
- Example: Ohm's law (V = IR)

2. Exponential (y = ae^(bx)):

- Exponential growth or decay
- Best for: RC/RL circuits, radioactive decay
- Example: Capacitor charging/discharging

3. Logarithmic (y = a ln(x) + b):

- Logarithmic relationship
- Best for: Diminishing returns, saturation effects
- Example: Sensor response curves

4. Polynomial $(y = ax^n + bx^{n-1} + ... + c)$:

- Curved line with peaks/valleys
- Order 2-6 (higher = more curves)
- Best for: Complex non-linear relationships
- Example: Temperature-dependent resistance

5. Power $(y = ax^b)$:

- Power relationship
- Best for: Proportional relationships with exponent
- Example: Power dissipation ($P = I^2R$)

Displaying Equation and R²:

- 1. Select trendline
- 2. Right-click → Format Trendline
- 3. Check boxes:
 - ☑ Display Equation on chart
 - ☑ Display R-squared value on chart
- 4. Equation and R² appear on chart

Understanding R² (Coefficient of Determination):

- Range: 0 to 1
- R² = 1.0: Perfect fit (all points on line)
- R² = 0.9-1.0: Excellent fit
- $R^2 = 0.7-0.9$: Good fit
- R² < 0.7: Poor fit (consider different trendline type)
- Measures how well trendline explains data variation

Using Trendline Equation:

Example - Sensor Calibration:

Data: Sensor output vs. known input

Trendline: Linear

Equation: y = 0.0485x + 0.12

R²: 0.9987

Application:

• Use equation to convert sensor readings to actual values

• In Excel: =0.0485*A2+0.12

• High R² confirms linear relationship and accurate calibration

Forecasting with Trendlines:

Extend trendline beyond data range to predict future values.

Steps:

- 1. Select trendline
- 2. Format Trendline → Forecast
- 3. Enter periods:
 - Forward: Extend into future
 - Backward: Extend into past
- 4. Trendline extends with dashed line

Example:

Historical data: 10 time points

• Forecast forward: 3 periods

• Trendline extends 3 points beyond last data point

• Use for: Trend projection, prediction

Logarithmic Axes:

Essential for data spanning multiple orders of magnitude.

When to Use:

- Frequency response (10 Hz to 1 MHz)
- Power measurements (µW to W)
- Resistance values (Ω to M Ω)
- Any data spanning 3+ decades

Creating Logarithmic Scale:

- 1. Select axis (click on axis numbers)
- 2. Right-click \rightarrow Format Axis
- 3. Axis Options \rightarrow Logarithmic scale (check box)
- 4. Base: Usually 10 (default)

Advanced Scatter Charts and Trendline Analysis

Example - Frequency Response (Bode Plot):

- X-axis: Frequency (Hz) Logarithmic scale
- Y-axis: Gain (dB) Linear scale
- Shows frequency response across wide range (10 Hz 100 kHz)

Error Bars:

Display uncertainty or variability in data.

Adding Error Bars:

- 1. Select data series
- 2. Chart Elements $(+) \rightarrow$ Error Bars \rightarrow More Options
- 3. Or Chart Design \rightarrow Add Chart Element \rightarrow Error Bars

Error Bar Types:

Fixed Value:

- Same error amount for all points
- Example: ±0.05V for all measurements

Percentage:

- Error proportional to value
- Example: ±5% of measured value

Advanced Scatter Charts and Trendline Analysis

Standard Deviation:

- Based on data variability
- Shows ±1 standard deviation

Standard Error:

- Standard deviation / Vn
- Shows uncertainty in mean

Custom:

- Specify different error for each point
- Use range of cells containing error values

Engineering Application - Calibration Curve:

Scenario: Create calibration curve for temperature sensor

Data: 10 known temperatures with 3 measurements each

Chart: Scatter plot with average values

Error Bars: Standard deviation of 3 measurements

Trendline: Linear with equation and R²

Analysis:

- Equation: y = 0.0234x 0.45, $R^2 = 0.9995$
- Error bars show measurement precision
- High R² confirms excellent linearity
- Use equation for temperature conversion

Advanced Scatter Charts and Trendline Analysis

Best Practices:

- Use appropriate trendline type for data relationship
- Always display R² to assess fit quality
- Try multiple trendline types, choose best R²
- Use logarithmic scales for wide-range data
- Include error bars for experimental data
- Format markers and lines for clarity
- Label axes with units
- Add descriptive title with key information

Histogram:

Shows frequency distribution of continuous data.

Purpose:

- Visualize data distribution
- Identify patterns (normal, skewed, bimodal)
- Detect outliers
- Assess process capability

Creating Histogram:

Method 1 - Built-in Histogram (Excel 2016+):

- 1. Select data range (single column of values)
- 2. Insert tab \rightarrow Charts group \rightarrow Insert Statistic Chart \rightarrow Histogram
- 3. Excel automatically creates bins and counts frequency

Method 2 - Data Analysis ToolPak:

- 1. Data tab \rightarrow Data Analysis \rightarrow Histogram
- 2. Input Range: Select data
- 3. Bin Range: Optional (Excel creates automatic bins if blank)
- 4. Output options: New worksheet or range
- 5. Check "Chart Output"

Formatting Histogram:

- Adjust bin width: Right-click bars → Format Data Series → Bin Width
- Set number of bins: Format Data Series → Number of bins
- Remove gaps: Format Data Series → Gap Width → 0%
- Add axis labels and title

Example - Resistor Value Distribution:

Data: 100 measured resistor values (nominal $1k\Omega$)

Histogram: Shows distribution around 1000Ω

Analysis:

- Normal distribution centered at 1005Ω
- Standard deviation visible from spread
- Outliers visible as isolated bars
- Quality control assessment

Box and Whisker Plot:

Displays statistical distribution showing quartiles, median, and outliers.

Components:

- Box: Interquartile range (IQR) 25th to 75th percentile
- Line in Box: Median (50th percentile)
- Whiskers: Extend to min/max within 1.5×IQR
- **Points:** Outliers beyond whiskers

Creating Box and Whisker Plot:

- 1. Select data range (can include multiple columns for comparison)
- 2. Insert tab \rightarrow Insert Statistic Chart \rightarrow Box and Whisker
- 3. Chart displays distribution for each data series

When to Use:

- Compare distributions across categories
- Identify outliers
- Assess data spread and symmetry
- Quality control across multiple batches

Example - Measurement Method Comparison:

Data: Three columns (Method A, B, C) with 20 measurements each

Chart: Three box plots side-by-side

Analysis:

- Compare median values (central line)
- Compare variability (box height)
- Identify outliers (individual points)
- Select most precise method

Waterfall Chart:

Shows cumulative effect of sequential positive and negative values.

Purpose:

- Visualize how initial value is affected by series of changes
- Show contribution of components to total
- Budget analysis, profit/loss breakdown

Creating Waterfall Chart:

- 1. Organize data with categories and values (positive/negative)
- 2. Select data range
- 3. Insert tab \rightarrow Insert Waterfall or Stock Chart \rightarrow Waterfall
- 4. Excel creates floating columns showing cumulative effect

Formatting:

- Set as Total: Right-click column → Set as Total (creates baseline column)
- Colors: Increase (green), Decrease (red), Total (blue)
- Connector lines: Show cumulative progression

Example - Project Budget Breakdown: Data:

Category	Amount		
Initial Budget	10000		
Components	-4000		
Labor	-3000		
Testing	-1500		
Documentation	-800		
Remaining	700		

Chart: Shows how budget is consumed by each category, ending at remaining amount

Pareto Chart:

Combination chart showing individual values (columns) and cumulative percentage (line).

Purpose:

- Identify most significant factors (80/20 rule)
- Prioritize improvement efforts
- Quality control defect analysis

Creating Pareto Chart:

- 1. Organize data with categories and values (sorted descending by value)
- 2. Select data range
- 3.Insert tab \rightarrow Insert Statistic Chart \rightarrow Pareto
- 4.Excel creates column chart with cumulative percentage line

Example - Defect Analysis: Data (sorted by frequency):

Defect Type	Count
Solder Joint	45
Component Placement	28
Wrong Value	15
Damaged	8
Other	4

Chart:

- Columns show defect counts
- Line shows cumulative percentage
- First two defects account for 73% of total (focus improvement here)

Sunburst Chart:

Hierarchical data visualization showing proportions at multiple levels.

Purpose:

- Display hierarchical relationships
- Show proportions within categories and subcategories
- Multi-level data breakdown

Creating Sunburst Chart:

- Organize data hierarchically (parent-child relationships)
- 2. Select data range
- 3. Insert tab \rightarrow Insert Hierarchy Chart \rightarrow Sunburst
- 4. Inner ring = top level, outer rings = subcategories

Example - Project Cost Breakdown:

- Center: Total project
- Inner ring: Major categories (Hardware, Software, Labor)
- Outer ring: Subcategories (Processors, Memory, Storage under Hardware)

Treemap Chart:

Hierarchical data displayed as nested rectangles.

Purpose:

- Similar to sunburst but rectangular layout
- Show proportions and hierarchies
- Compare sizes visually

Creating Treemap:

- 1. Organize hierarchical data
- 2. Insert tab \rightarrow Insert Hierarchy Chart \rightarrow Treemap
- 3. Rectangle size proportional to value

Funnel Chart:

Shows progressive reduction through stages.

Purpose:

- Visualize process with sequential stages
- Show conversion rates
- Identify bottlenecks

Example - Manufacturing Yield:

- Stage 1: 1000 units started
- Stage 2: 950 passed inspection
- Stage 3: 920 passed testing
- Stage 4: 900 shipped
- Chart shows narrowing funnel with yield at each stage

Engineering Applications:

Quality Control:

- Histogram: Distribution of measurements
- Box plot: Compare batches or methods
- Pareto: Identify main defect types

Process Analysis:

- Waterfall: Cost or time breakdown
- Funnel: Yield through production stages

Data Distribution:

- Histogram: Assess normality
- Box plot: Identify outliers

Best Practices:

- Choose chart type matching data structure and message
- Use histogram for continuous data distribution
- Use box plot for comparing distributions
- Use Pareto for prioritization (80/20 analysis)
- Format clearly with labels and titles
- Consider audience familiarity with chart type

What are Sparklines?

Sparklines are miniature charts embedded directly in cells, providing compact visual representation of data trends without creating full-size charts.

Characteristics:

- Fit within single cell
- No axes, labels, or legends
- Show trend or pattern at a glance
- Update automatically with data changes
- Ideal for dashboards and data tables

Types of Sparklines:

1. Line Sparkline:

- Miniature line chart
- Shows trend over time or sequence
- Best for: Continuous data, time series

2. Column Sparkline:

- Miniature column chart
- Shows individual values as bars
- Best for: Comparing values, identifying peaks

3. Win/Loss Sparkline:

- Shows positive/negative/zero as bars
- Positive: Up bar, Negative: Down bar, Zero: Gap
- Best for: Binary outcomes, pass/fail, profit/loss

Creating Sparklines:

Steps:

- 1. Select cell where sparkline will appear
- 2. Insert tab \rightarrow Sparklines group \rightarrow Choose type (Line, Column, or Win/Loss)
- 3. Create Sparklines dialog opens
- 4. Data Range: Select cells containing data to visualize
- 5. Location Range: Confirm cell for sparkline (pre-filled)
- 6. Click OK
- 7. Sparkline appears in cell

Example - Weekly Measurements:

Data (A2:G2):

Mon	Tue	Wed	Thu	Fri	Sat	Sun
5.0	5.1	4.9	5.2	5.0	4.8	5.1

Sparkline in H2:

- Insert → Line Sparkline
- Data Range: A2:G2
- Shows weekly trend in single cell

Copying Sparklines:

- Create sparkline in first row
- Copy cell (Ctrl+C)
- Select range for additional sparklines
- Paste (Ctrl+V)
- Each row gets sparkline for its data

Formatting Sparklines:

Sparkline Tools Design Tab:

Appears when sparkline cell is selected.

Style Options:

- Sparkline Style: Predefined color schemes
- Sparkline Color: Custom line/column color
- Marker Color: Highlight specific points

Markers (Line Sparklines):

- **High Point:** Highest value (green)
- Low Point: Lowest value (red)
- First Point: First value (blue)
- Last Point: Last value (orange)
- Negative Points: Negative values (red)
- Markers: All data points

Show Group:

Check boxes to display markers:

- **☑** High Point
- **✓** Low Point
- ✓ First Point
- ✓ Last Point
- **☑** Negative Points
- ✓ Markers

Axis Options:

- Vertical Axis Min/Max:
 - Automatic (each sparkline scaled independently)
 - Same for All (consistent scale across sparklines)
 - Custom Value
 - Horizontal Axis:
 - General (evenly spaced points)
 - Date Axis (use actual dates for spacing)
 - Show Axis: Display horizontal axis line (useful for positive/negative data)

Example - Temperature Monitoring: Data Table:

Sensor	Mon	Tue	Wed	Thu	Fri	Trend
Α	22	23	24	23	22	[sparkline]
В	25	26	28	27	26	[sparkline]
С	20	20	21	20	20	[sparkline]

Sparklines in "Trend" column:

- Line sparklines showing daily temperature
- High/Low points marked
- Quick visual comparison across sensors
- Sensor B shows higher temperatures and more variation

Win/Loss Sparkline Example: **Data - Daily Test Results:**

Day	Result	Sparkline		
Mon	Pass	[up bar]		
Tue	Pass	[up bar]		
Wed	Fail	[down bar]		
Thu	Pass	[up bar]		
Fri	Pass	[up bar]		

Data Preparation:

- Convert Pass/Fail to 1/-1
- Pass = 1, Fail = -1
- Create Win/Loss sparkline from numeric data

Engineering Applications:

Dashboard Integration:

- Add sparklines to data tables for instant trend visualization
- Monitor multiple parameters simultaneously
- Identify anomalies quickly

Example - Power Supply Testing:

Table:

Unit	V1	V2	V 3	V4	V 5	Trend	Status
PS01	5.0	5.1	5.0	5.1	5.0	[sparkline]	Stable
PS02	5.0	5.2	5.4	5.6	5.8	[sparkline]	Drifting
PS03	5.0	4.9	5.1	4.8	5.2	[sparkline]	Noisy

Analysis:

- PS01: Flat sparkline = stable output
- PS02: Rising sparkline = voltage drift (investigate)
- PS03: Jagged sparkline = noise (investigate)

Quality Control Application: Production Monitoring:

Batch	Day1	Day2	Day3	Day4	Day5	Trend	Action
Α	98	97	98	97	98	[sparkline]	ОК
В	98	96	94	92	90	[sparkline]	Alert
С	98	98	99	98	98	[sparkline]	ОК

Batch B sparkline shows declining trend → investigate process

Best Practices:

Effective Use:

- Use in tables alongside data for context
- Consistent formatting across related sparklines
- Appropriate type for data (line for trends, column for comparisons, win/loss for binary)
- Mark high/low points for line sparklines

Scaling:

- Use "Same for All" axis scaling when comparing across rows
- Use "Automatic" when each row represents independent measurement
- Consider custom min/max for consistent reference

Color Coding:

- Use color to convey meaning (green=good, red=bad)
- Highlight high/low points with contrasting colors
- Maintain consistency across dashboard

Limitations:

- No axes or labels (context must come from surrounding data)
- Limited interactivity
- Not suitable for precise value reading
- Best for trends and patterns, not exact values

Advantages:

- Space-efficient
- Quick visual scanning
- Integrates with data tables
- Automatic updates
- Easy to create and format

What are Dynamic Charts?

Charts that automatically update when data is added, removed, or modified, without manual adjustment of data ranges.

Benefits:

- Automatic updates with new data
- No manual range adjustment needed
- Reduced errors
- Time savings
- Professional, maintainable solutions

Methods for Creating Dynamic Charts:

Method 1 - Excel Tables:

Simplest method for dynamic charts.

Steps:

- 1. Select data range
- 2. Insert tab → Table (or Ctrl+T)
- 3. Check "My table has headers"
- 4. Click OK
- 5. Data converts to formatted table
- 6. Create chart from table data
- 7. Chart automatically expands/contracts with table

Advantages:

- Automatic range expansion
- Structured references (e.g., Table1[Voltage])
- Built-in filtering and sorting
- Professional formatting

Example:

- Table with voltage measurements
- Add new row → Chart automatically includes new data
- Delete row → Chart automatically updates

Method 2 - Named Ranges with OFFSET:

More flexible, works with non-table data.

OFFSET Function:

Returns reference to range offset from starting cell.

Syntax:

=OFFSET(reference, rows, cols, [height], [width])

Dynamic Range Formula:

=OFFSET(Sheet1!\$A\$2, 0, 0, COUNTA(Sheet1!\$A:\$A)-1, 1)

Explanation:

- Starts at A2 (first data cell)
- Offset 0 rows, 0 columns (stays at A2)
- Height: COUNTA(A:A)-1 (counts non-empty cells minus header)
- Width: 1 column
- Range automatically adjusts as data added/removed

Creating Named Range:

- 1. Formulas tab \rightarrow Define Name
- Name: "DynamicData"
- 3. Refers to: Enter OFFSET formula
- 4. Click OK

Using in Chart:

- 1. Create chart
- 2. Select chart → Chart Design → Select Data
- 3. Edit series
- 4. Series values: =Sheet1!DynamicData
- 5. Click OK

Example - Dynamic Voltage Data:

Named Range "VoltageData":

=OFFSET(Data!\$B\$2, 0, 0, COUNTA(Data!\$B:\$B)-1, 1)

Named Range "TimeData":

=OFFSET(Data!\$A\$2, 0, 0, COUNTA(Data!\$A:\$A)-1, 1)

Chart Series:

- X-values: =Data!TimeData
- Y-values: =Data!VoltageData
- Add new measurement → Chart updates automatically

Method 3 - Dynamic Range with INDEX:

Alternative to OFFSET using INDEX function.

Formula:

=Data!\$A\$2:INDEX(Data!\$A:\$A, COUNTA(Data!\$A:\$A))

Explanation:

- Starts at A2
- Ends at last non-empty cell in column A
- INDEX finds last row with data

Interactive Charts with Form Controls:

Adding Drop-Down List:

- 1. Developer tab \rightarrow Insert \rightarrow Form Controls \rightarrow Combo Box
- 2. Draw combo box on worksheet
- 3. Right-click \rightarrow Format Control
- 4. Input range: List of options
- 5. Cell link: Cell to store selection number
- 6. Click OK

Using Selection in Chart:

- Use INDEX or CHOOSE function to select data series based on dropdown
- Chart displays selected data dynamically

Example - Component Selection:

Dropdown: Lists component IDs (R101, R102, R103)

Cell Link: Cell A1 (stores selection: 1, 2, or 3)

Chart Data:

- =INDEX(ComponentData, A1, 2)
- Displays specifications for selected component
- Change dropdown → Chart updates

Scroll Bar for Time Range:

- 1. Developer tab \rightarrow Insert \rightarrow Scroll Bar
- Format Control:
 - Min value: 1
 - Max value: 100 (total data points)
 - Cell link: Cell storing current position
- 3. Use cell value to define visible range in chart

Example - Scrolling Time Window:

- Display last 20 measurements
- Scroll bar moves window through dataset
- Chart shows selected 20-point window

Formula for Dynamic Window:

- =OFFSET(Data!\$A\$2, ScrollValue, 0, 20, 1)
- Starts at row determined by scroll bar
- Shows 20 rows
- Scroll bar changes starting point

Engineering Application - Real-Time Monitoring:

Scenario: Temperature monitoring with continuous data logging

Setup:

- Data table with timestamps and temperatures
- Named range automatically includes all data
- Chart displays data dynamically
- New measurements added → Chart updates automatically
- Optional: Scroll bar to view historical data

Implementation:

- 1. Convert data to Excel Table
- 2. Create line chart from table
- 3. Add scroll bar for time window selection
- 4. Add dropdown for sensor selection (if multiple sensors)
- 5. Chart updates automatically with new data and user selections

Best Practices:

Choosing Method:

- Excel Tables: Best for most cases, simplest implementation
- Named Ranges: When tables not suitable or more control needed
- Form Controls: For interactive dashboards and user selection

Performance:

- OFFSET is volatile (recalculates frequently) can slow large workbooks
- INDEX method is non-volatile (better performance)
- Consider performance with large datasets

Maintenance:

- Document named range formulas
- Use descriptive names (e.g., "VoltageData" not "Range1")
- Test with data additions/deletions
- Verify chart updates correctly

Error Handling:

- Ensure formulas handle empty cells
- Test with minimum data (1-2 rows)
- Verify behavior when data deleted

Chart Best Practices for Advanced Visualizations

Design Principles for Complex Charts:

Clarity Over Complexity:

- Advanced features should enhance understanding, not obscure it
- Every element should serve a purpose
- Remove unnecessary decoration
- Focus on data, not chart effects

Appropriate Complexity:

- Match chart complexity to audience expertise
- Technical audience: Can handle more complex visualizations
- Executive audience: Prefer simpler, clearer charts
- Consider presentation context (paper, presentation, dashboard)

Chart Best Practices for Advanced Visualizations

Consistency:

- Maintain consistent formatting across related charts
- Use same color scheme throughout document
- Consistent axis scales for comparable charts
- Standard fonts and sizes

Professional Formatting:

Color Strategy:

Meaningful Colors:

- Use color to convey information, not just decoration
- Consistent color coding (e.g., blue=measured, red=target)
- Limit palette to 3-5 colors for clarity
- Consider colorblind-friendly palettes

Contrast:

- Sufficient contrast between elements
- Dark colors on light background or vice versa
- Avoid low-contrast combinations (yellow on white, light gray on white)

Emphasis:

- Use color to highlight important data
- Muted colors for context, bright colors for focus
- Example: Gray for historical data, blue for current period

Typography:

Font Selection:

- Professional fonts: Arial, Calibri, Helvetica
- Avoid decorative fonts
- Consistent font family throughout chart

Font Sizes:

- Title: 14-16 pt
- Axis titles: 11-12 pt
- Axis labels: 10-11 pt
- Legend: 10-11 pt
- Data labels: 9-10 pt
- Readable when printed or projected

Text Orientation:

- Horizontal text preferred for readability
- Rotate axis labels only if necessary
- Avoid vertical text when possible

Axis Formatting:

Scale Selection:

- Start Y-axis at zero for bar/column charts (avoid misleading scaling)
- Non-zero start acceptable for line charts if clearly indicated
- Use logarithmic scale for wide-range data (multiple decades)
- Consistent scales across comparable charts

Gridlines:

- Subtle gridlines (light gray, thin lines)
- Major gridlines only (avoid minor unless necessary)
- Horizontal gridlines most useful for reading values
- Vertical gridlines optional, use sparingly

Tick Marks:

- Appropriate intervals for easy reading
- Round numbers preferred (0, 5, 10 vs. 0, 4.7, 9.4)
- Not too many (cluttered) or too few (hard to read)

Labels and Titles:

Chart Title:

- Descriptive and specific
- Include key information (conditions, parameters)
- Example: "Capacitor Voltage vs. Time (R=10kΩ, C=100μF, T=25°C)"
- Not: "Chart 1" or "Voltage"

Axis Titles:

- Always include units in parentheses or brackets
- Example: "Voltage (V)", "Time (s)", "Frequency (Hz)"
- Clear description of what axis represents

Legend:

- Clear series identification
- Positioned to not obscure data
- Consider removing if only one series (use chart title instead)
- Order matches visual order in chart when possible

Data Labels:

- Use sparingly (can clutter chart)
- Include when specific values important
- Format consistently (decimal places, units)
- Position to avoid overlap

Engineering-Specific Guidelines:

Technical Accuracy:

- Accurate representation of data (no distortion)
- Appropriate significant figures
- Error bars for experimental data
- Document data source and conditions

Standards Compliance:

- Follow IEEE, ISO, or institutional guidelines
- Standard symbols and notation
- Proper figure numbering and captions
- Reference charts in text

Documentation:

- Include measurement conditions
- Note any data processing (filtering, averaging)
- Specify equipment and methods
- Date of data collection

Reproducibility:

- Sufficient information to reproduce chart
- Clear methodology
- Raw data available if needed

Common Mistakes to Avoid:

Visual Errors:

- 3D effects (distort perception, avoid unless necessary)
- Excessive decoration (chart junk)
- Poor color choices (low contrast, too many colors)
- Inconsistent formatting across charts

Data Errors:

- Misleading scales (truncated Y-axis on bar chart)
- Inappropriate chart type for data
- Missing error bars on experimental data
- Unlabeled or poorly labeled axes

Technical Errors:

- Missing units
- Incorrect axis assignment
- Inappropriate trendline type
- No indication of sample size or uncertainty

Chart Review Checklist:

Before finalizing chart, verify:

- ☑ Appropriate chart type for data and message
- ☑ Clear, descriptive title with key information
- ☑ Axis titles with units
- ☑ Readable font sizes
- ☑ Appropriate axis scales
- ✓ Legend (if multiple series)
- ☑ Consistent formatting with other charts
- ✓ No unnecessary decoration

Chart Review Checklist:

- ☑ Readable in black-and-white
- ☑ Error bars (if experimental data)
- ☑ Trendline with equation/R² (if applicable)
- ☑ Professional color scheme
- ✓ All text horizontal and readable
- ✓ No overlapping labels
- **☑** Sufficient contrast

Example 1 - Multi-Variable Circuit Analysis

Objective: Analyze RC circuit behavior with varying time constants

Data:

Time (s)	τ=0.5s (V)	τ=1.0s (V)	τ=2.0s (V)
0.0	0.00	0.00	0.00
0.5	3.16	1.97	1.11
1.0	4.32	3.16	1.97
1.5	4.75	3.89	2.64
2.0	4.91	4.32	3.16
3.0	4.99	4.75	3.89
4.0	5.00	4.91	4.32
5.0	5.00	4.97	4.55

Chart Type: Line chart with multiple series **Key Elements:**

- Three series with different colors and markers
- X-axis: Time (s), linear scale
- Y-axis: Voltage (V), 0-5V
- Legend identifying each time constant
- Horizontal reference line at 63.2% (one time constant marker)
- Title: "RC Circuit Charging Effect of Time Constant"

Analysis:

- Smaller τ: Faster charging (reaches 5V sooner)
- Larger τ: Slower charging (more gradual curve)
- All curves follow exponential pattern
- At t=τ, voltage reaches ~63.2% of final value (3.16V)

Advanced Feature:

- Add exponential trendlines to each series
- Display equations showing $V = 5(1-e^{-\tau})$
- Verify theoretical vs. measured values

Example 2 - Sensor Calibration with Error Analysis

Objective: Create calibration curve for pressure sensor

with uncertainty

Data (3 measurements per point):

Pressure (kPa)	Reading 1	Reading 2	Reading 3	Average	Std Dev
0	0.02	-0.01	0.01	0.01	0.015
20	0.98	1.02	1.00	1.00	0.020
40	2.01	1.98	2.00	2.00	0.015
60	2.99	3.02	3.01	3.01	0.015
80	4.00	3.98	3.99	3.99	0.010
100	5.02	4.98	5.00	5.00	0.020

Chart Type: Scatter chart with error bars and trendline

Setup:

X-axis: Pressure (kPa)

Y-axis: Sensor Output (V)

 Data points: Average values with markers

• Error bars: ±1 standard deviation

Linear trendline with equation and R²

Formulas:

Average: =AVERAGE(B2:D2)

Std Dev: =STDEV.S(B2:D2)

Trendline:

• Type: Linear

• Equation: y = 0.0499x + 0.0067

• R²: 0.9999

Analysis:

• Excellent linearity (R² = 0.9999)

Slope: 0.0499 V/kPa (sensitivity)

• Intercept: 0.0067V (offset)

• Small error bars indicate good precision

Calibration equation: Pressure = (Output - 0.0067) / 0.0499

Application:

=IF(A2="", "", (A2-0.0067)/0.0499)

- Converts sensor output to pressure reading
- Use in measurement spreadsheet

Example 3 - Frequency Response Analysis (Bode Plot)

Objective: Plot amplifier frequency

response with dual Y-axes

Data:

Frequency (Hz)	Gain (dB)	Phase (°)
10	39.8	-2
100	40.0	-5
1,000	40.0	-8
10,000	38.5	-25
100,000	28.2	-65
1,000,000	12.1	-85

Chart Type: Combo chart with secondary axis and logarithmic X-axis

Setup:

- X-axis: Frequency (Hz), logarithmic scale
- Primary Y-axis (left): Gain (dB), linear scale
- Secondary Y-axis (right): Phase (°), linear scale
- Gain: Line chart (blue) on primary axis
- Phase: Line chart (red) on secondary axis

Key Elements:

- Logarithmic X-axis (frequency spans 6 decades)
- Two Y-axes with different scales
- Different colors for gain and phase
- Markers at measurement points
- Horizontal reference line at -3dB (cutoff frequency)
- Title: "Amplifier Frequency Response (Av=100, BW=10kHz)"

Analysis:

- Flat gain (~40dB) in passband (10Hz 10kHz)
- -3dB point at ~10kHz (cutoff frequency)
- Rolloff at high frequencies
- Phase shift increases with frequency
- -45° phase at cutoff frequency (typical for first-order system)

Advanced Features:

- Add vertical line at cutoff frequency
- Calculate bandwidth from -3dB points
- Display specifications in text box on chart

Example 4 - Statistical Process Control Dashboard

Objective: Monitor production quality with multiple visualizations

Data: 100 resistance measurements from production line

Dashboard Components:

1. Control Chart (Line Chart):

- X-axis: Sample number (1-100)
- Y-axis: Resistance (Ω)
- Data points with line
- Horizontal lines:
 - \circ Center line (mean): 1000Ω
 - \circ Upper control limit (UCL): Mean + 3 σ
 - Lower control limit (LCL): Mean 3σ
 - Points outside control limits highlighted in red

2. Histogram:

- Shows distribution of measurements
- Normal distribution curve overlay
- Specification limits marked

3. Summary Statistics (Table):

Mean: =AVERAGE(Data) 1000.5 Ω

Std Deviation: =STDEV.S(Data) 8.2 Ω

Min: =MIN(Data) 978 Ω

Max: =MAX(Data) 1023 Ω

Range: =MAX(Data)-MIN(Data) 45 Ω

Within Spec: =COUNTIFS(Data,">=990",Data,"<=1010") 95

Percent in Spec: =Within/COUNT(Data)*100 95%

Cp: =(1010-990)/(6*STDEV.S(Data)) 0.41

4. Sparklines:

- One sparkline per production batch (20 batches, 5 samples each)
- Quick visual identification of batch trends

Analysis:

- Process centered at target (1000 Ω)
- 95% within specification (990-1010 Ω)
- Cp = 0.41 (process capability insufficient, needs improvement)
- No points outside control limits (process in control)
- Distribution approximately normal

Action Items:

- Reduce process variation (improve Cp to >1.33)
- Investigate batches with declining sparkline trends
- Continue monitoring for out-of-control points

Example 5 - Comparative Performance Analysis

Objective: Compare three voltage regulators across multiple parameters **Data:**

Parameter	Reg A	Reg B	Reg C	Target
Output Voltage (V)	4.98	5.00	4.95	5.00
Load Regulation (%)	8.0	0.4	2.1	<1.0
Line Regulation (%)	0.5	0.3	1.5	<1.0
Efficiency (%)	85	88	82	>85
Cost (\$)	2.50	3.20	1.80	<3.00

Visualizations:

1. Radar Chart:

- Shows all parameters for all regulators on single chart
- Each regulator = different colored line
- Quickly identifies strengths/weaknesses
- Normalized scales for comparison

2. Comparison Table with Conditional Formatting:

- Green: Meets or exceeds target
- Yellow: Close to target
- Red: Fails to meet target
- Sparklines showing trend if historical data available

3. Scatter Plot - Cost vs. Efficiency:

- X-axis: Cost (\$)
- Y-axis: Efficiency (%)
- Each regulator = data point
- Identifies best value (high efficiency, low cost)

Analysis:

- Reg A: Good balance, meets most specs, moderate cost
- Reg B: Best performance, highest efficiency, but most expensive
- **Reg C:** Lowest cost, but poor regulation and efficiency
- **Recommendation:** Reg A for cost-sensitive applications, Reg B for performance-critical applications

Decision Matrix:

Score = (Efficiency/100) \times 0.3 + (1-LoadReg/10) \times 0.3 + (1-LineReg/10) \times 0.2 + (1-Cost/5) \times 0.2

- Weighted scoring based on priorities
- Reg B: 0.85 (highest score)
- Reg A: 0.78
- Reg C: 0.62

Key Takeaways:

Function Mastery:

- Combine logical, lookup, and statistical functions for powerful analysis
- Use IFERROR for robust formulas
- INDEX-MATCH more flexible than VLOOKUP
- Statistical functions essential for measurement analysis

Chart Selection:

- Match chart type to data structure and message
- Use combo charts and secondary axes for multi-variable data
- Scatter charts with trendlines for correlation analysis
- Specialized charts (histogram, box plot) for statistical analysis

Professional Presentation:

- Clear titles and labels with units
- Appropriate scales and formatting
- Consistent style across related charts
- Error bars for experimental data
- Accessibility considerations

Dynamic Solutions:

- Excel tables for automatic chart updates
- Named ranges for flexibility
- Form controls for interactivity
- Sparklines for compact visualization

Engineering Applications:

- Calibration curves with error analysis
- Frequency response (Bode plots)
- Statistical process control
- Multi-parameter comparison
- Automated data analysis and reporting

Creating Your First Chart

Example - Creating Voltage vs. Time Chart:

Data:

Steps:

- 1. Select A1:B6 (including headers)
- 2. Insert \rightarrow Recommended Charts
- 3. Select Line chart
- 4. Click OK
- 5. Chart shows voltage increasing over time

Time (s)	Voltage (V)
0	0.0
1	3.2
2	4.3
3	4.7
4	4.9

Chart Tools Contextual Tabs:

When chart is selected, two contextual tabs appear in ribbon:

1. Chart Design Tab:

Controls overall chart structure, data, and appearance.

Key Groups:

- Chart Layouts: Quick access to predefined element combinations
- Chart Styles: Color schemes and visual styles
- Data: Edit data source, switch row/column, select data
- Type: Change chart type
- Location: Move chart to new sheet or embed in worksheet

2. Format Tab:

Controls detailed formatting of individual chart elements.

Key Groups:

- Current Selection: Choose specific element to format
- Insert Shapes: Add shapes to chart
- Shape Styles: Quick formatting for shapes
- WordArt Styles: Text formatting options
- Arrange: Layer order, alignment, grouping
- **Size:** Precise chart dimensions

Selecting Chart Elements:

Method 1 - Click Element:

- Click directly on element (title, axis, legend, etc.)
- Handles appear around selected element
- Format tab → Current Selection shows element name

Method 2 - Chart Elements Dropdown:

- Format tab → Current Selection group → Chart Elements dropdown
- Select element from list
- Useful for small or overlapping elements

Method 3 - Keyboard:

- Select chart
- Press Up/Down arrow keys to cycle through elements

Chart Buttons (Right Side of Chart):

Three buttons appear when chart is selected:

1. Chart Elements (+):

- Add, remove, or position chart elements
- Checkboxes for quick element visibility
- Submenu arrow for element options
- Elements: Axes, Axis Titles, Chart Title, Data Labels, Data Table, Error Bars, Gridlines, Legend, Trendline

2. Chart Styles (paintbrush):

- Apply predefined color schemes and styles
- Style tab: Complete chart styles
- Color tab: Color schemes only

3. Chart Filters (funnel):

- Show/hide specific data series or categories
- Temporarily filter chart data without changing source
- Useful for focusing on specific data

Moving and Resizing Charts:

- Move: Click chart area, drag to new location
- Resize: Click chart, drag corner handles (maintain aspect ratio) or side handles
- **Precise Size:** Format tab \rightarrow Size group \rightarrow enter exact dimensions
- Move to New Sheet: Chart Design tab \rightarrow Location group \rightarrow Move Chart

Adding and Formatting Chart Elements

Adding Chart Title:

Select chart

Click Chart Elements button (+) → Check Chart Title

Or Chart Design tab \rightarrow Add Chart Element \rightarrow Chart Title \rightarrow position

Click title text box and type descriptive title

Example: "Capacitor Voltage vs. Time During Charging"

Formatting Chart Title:

- Select title → Home tab → Font formatting (bold, size, color)
- Or right-click title → Format Chart Title → detailed options
- Font, fill, border, shadow, 3D effects

Adding Axis Titles:

Chart Elements $(+) \rightarrow$ Check Axis Titles

Or Chart Design → Add Chart Element → Axis Titles

Choose Primary Horizontal and/or Primary Vertical

Click axis title and type label with units

Example: "Time (s)" for horizontal, "Voltage (V)" for vertical

Adding and Formatting Chart Elements

Formatting Axes:

Select axis (click on numbers/labels)

Right-click → Format Axis

Format Axis pane opens with options:

Axis Options: Bounds (min/max), units, scale, position

Tick Marks: Major/minor tick mark style

Labels: Position, number format

Number: Decimal places, format (general, number, scientific)

Key Axis Settings:

- Minimum/Maximum Bounds: Control axis range (auto or manual)
- Major Unit: Interval between gridlines and labels
- Minor Unit: Subdivisions (if minor gridlines shown)
- Logarithmic Scale: For wide data ranges (decades)
- Values in Reverse Order: Flip axis direction

Adding Legend:

Chart Elements (+) → Check Legend

Choose position: Right, Top, Bottom, Left

Legend shows series names with color/marker

Formatting Legend:

- Select legend → drag to reposition
- Right-click → Format Legend → fill, border, font
- Delete individual legend entry: Select entry → Delete (hides series)

Adding Data Labels:

Chart Elements (+) → Check Data Labels

Or Chart Design \rightarrow Add Chart Element \rightarrow Data Labels \rightarrow position

Positions: Center, Inside End, Outside End, Data Callout

Shows values directly on data points

Adding and Formatting Chart Elements

Formatting Data Labels:

- Right-click data label → Format Data Labels
- Label Options: Value, Series Name, Category Name, Percentage
- Number format, font, fill, border

Adding Gridlines:

Chart Elements $(+) \rightarrow$ Gridlines \rightarrow choose options

Primary Major Horizontal (most common)

Primary Major Vertical (optional)

Minor gridlines for finer divisions

Formatting Gridlines:

- Right-click gridline → Format Gridlines
- Line style, color, width, dash type
- Subtle gridlines (light gray) recommended for professional appearance

Applying Chart Styles:

Chart styles are predefined combinations of colors, effects, and formatting that give charts professional appearance instantly.

Method 1 - Chart Styles Button:

Select chart

Click Chart Styles button (paintbrush icon)

Style tab shows style thumbnails

Hover to preview

Click to apply

Method 2 - Chart Design Tab:

Select chart

Chart Design tab → Chart Styles group

Click More button to see full gallery

Choose style

Style Categories:

- Styles 1-8: Colorful with various effects
- Styles 9-16: Monochromatic with shading
- Each style includes specific color scheme, fonts, and effects

Changing Chart Colors:

Modify color scheme without changing overall style.

Steps:

Select chart

Chart Styles button → Color tab

Or Chart Design tab → Chart Styles group → Change Colors

Choose from color schemes:

Colorful: Multi-color palettes

Monochromatic: Single color variations

Theme Colors: Match document theme

Manual Color Customization:

Select specific data series (click bar, line, or slice)

Right-click → Format Data Series

Fill & Line options

Choose solid fill, gradient, pattern, or picture

Select custom color

Formatting Individual Data Points:

Click data series once (selects entire series)

Click specific data point again (selects only that point)

Right-click → Format Data Point

Apply unique color or formatting

Use to highlight specific values or outliers

Color Best Practices:

Professional Appearance:

- Use consistent color scheme throughout document
- Limit to 3-5 colors for clarity
- Ensure sufficient contrast for readability
- Consider colorblind-friendly palettes

Engineering Documentation:

- Match institutional or publication style guidelines
- Use standard colors for specific meanings (red=error, green=pass)
- Ensure charts are readable in black-and-white printing
- Test print preview before finalizing

Accessibility:

- High contrast between data series
- Avoid red-green combinations (colorblind consideration)
- Use patterns or markers in addition to colors
- Include legend for color identification

Theme Colors:

- Chart colors automatically match document theme
- Change document theme: Page Layout tab → Themes
- All charts update to match new theme colors

Column Charts:

Vertical bars comparing values across categories.

When to Use:

- Comparing discrete categories
- Showing changes over time (limited time points)
- Multiple data series comparison
- Emphasizing individual values

Column Chart Subtypes:

1. Clustered Column:

- Multiple series displayed side-by-side
- Easy comparison within and across categories
- Best for: Comparing 2-4 series across categories
- Example: Comparing voltage output of three power supplies under different loads

2. Stacked Column:

- Series stacked on top of each other
- Shows contribution to total
- Best for: Part-to-whole relationships over categories
- Example: Total power consumption with breakdown by component

3. 100% Stacked Column:

- Stacked columns normalized to 100%
- Shows relative proportions
- Best for: Comparing percentage distribution across categories
- Example: Percentage of total current through each branch

Creating Column Chart:

Organize data with categories in first column, values in subsequent columns

Select data range including headers

Insert → Column Chart → Choose subtype

Chart appears with categories on X-axis, values on Y-axis

Example Data - Component Testing: Result:

Clustered column chart with three groups (supplies) and three series (tests)

Component	Test 1 (V)	Test 2 (V)	Test 3 (V)
Supply A	5.02	5.01	5.03
Supply B	4.98	4.99	4.97
Supply C	5.05	5.04	5.06

Bar Charts:

Horizontal bars comparing values across categories.

When to Use:

- Long category names (easier to read horizontally)
- Ranking or ordering data
- Many categories (more vertical space)
- Emphasizing comparison rather than time

Bar Chart Subtypes:

Same as column charts but horizontal orientation:

- Clustered Bar
- Stacked Bar
- 100% Stacked Bar

Creating Bar Chart:

Select data range

Insert \rightarrow Bar Chart \rightarrow Choose subtype

Categories appear on Y-axis (vertical), values on X-axis (horizontal)

Formatting Column/Bar Charts:

Gap Width:

- Select data series → Format Data Series
- Series Options → Gap Width slider
- Smaller gap: Wider bars, more emphasis on values
- Larger gap: Narrower bars, more white space

Overlap:

- For clustered charts only
- Negative overlap: Bars separated
- Zero overlap: Bars touching
- Positive overlap: Bars overlapping

Engineering Application - Resistor Tolerance:

Chart comparing measured vs. nominal resistance values with tolerance bands visualized through error bars or reference lines.

Line Charts:

Show trends and changes over continuous variables, typically time.

When to Use:

- Time series data (measurements over time)
- Continuous data (not discrete categories)
- Showing trends and patterns
- Multiple data series comparison
- Large number of data points

Line Chart Subtypes:

1. Line:

- Lines only, no markers
- Clean appearance for many data points
- Best for: Smooth trends, multiple series

2. Line with Markers:

2. Line with Markers:

- Lines with markers at each data point
- Emphasizes individual measurements
- Best for: Fewer data points, highlighting specific values

3. Stacked Line:

- Lines stacked showing cumulative values
- Less common, can be confusing
- Best for: Cumulative totals over time

4. 100% Stacked Line:

- Shows percentage contribution over time
- Best for: Relative proportions changing over time

Creating Line Chart:

Organize data with X-values (time/independent variable) in first column

Y-values (measurements/dependent variable) in subsequent columns
Select data range including headers
Insert → Line Chart → Choose subtype
Chart shows X-values on horizontal axis,
Y-values on vertical axis

Example Data - RC Circuit Charging:

Result: Line chart showing exponential charging curve

Time (s)	Voltage (V)
0	0.00
0.5	3.16
1.0	4.32
1.5	4.75
2.0	4.91
2.5	4.97

Formatting Line Charts:

Line Style:

- Select data series → Format Data Series
- Line options: Solid, gradient, no line
- Width: Thickness (0.75 pt to 6 pt)
- Dash type: Solid, dashed, dotted
- Use different line styles to distinguish series

Markers:

- Format Data Series → Marker Options
- Built-in markers: Circle, square, diamond, triangle, etc.
- Size: Adjust marker size (3-20 points)
- Fill and border: Customize marker appearance
- Use different markers for each series

Smooth Lines:

- Format Data Series → Line → Check "Smoothed line"
- Creates curved lines between points
- Use for: Theoretical curves, trend visualization
- Avoid for: Actual measured data (can misrepresent)

Multiple Series:

- Each series gets unique color and marker
- Legend identifies each series
- Format each series individually for clarity

Engineering Applications:

Waveforms:

- Voltage or current vs. time
- Input and output signals on same chart
- Periodic signals (sine waves, square waves)

Frequency Response:

- Gain vs. frequency
- Phase vs. frequency
- Use logarithmic scale for frequency axis

Temperature Monitoring:

- Temperature vs. time during experiment
- Multiple sensors on same chart

Calibration Curves:

- Sensor output vs. known input
- Linear or polynomial trendline

Pie Charts:

Show proportional relationships—how parts contribute to a whole.

When to Use:

- Single data series only
- Showing percentage or proportional distribution
- Limited categories (5-7 maximum for clarity)
- Emphasizing one or two segments
- Total equals meaningful whole (100%)

When NOT to Use:

- Multiple data series (use column/bar instead)
- Many categories (becomes cluttered)
- Precise value comparison (column chart better)
- Changes over time (line chart better)

Pie Chart Subtypes:

1. Pie:

- Standard circular pie chart
- Shows all slices in single circle

2. Exploded Pie:

- Slices separated from center
- Emphasizes individual segments
- Can explode all slices or specific slices

3. Pie of Pie:

- Main pie with secondary pie showing detail of one slice
- Best for: One slice contains multiple small components

4. Bar of Pie:

- Main pie with secondary bar chart showing detail
- Similar to Pie of Pie but uses bar chart

5. Doughnut:

- Pie chart with hollow center
- Can show multiple series (concentric rings)
- Center space available for labels or totals

Creating Pie Chart:

Organize data with categories in first column, values in second column

Select data range including headers (single series only)
Insert → Pie Chart → Choose subtype
Chart shows slices proportional to values

Example Data - Power Distribution:

Total: 30W

Result: Pie chart showing each component's percentage

of total power

Component	Power (W)
Processor	15
Display	8
Memory	3
Storage	2
Other	2

Formatting Pie Charts:

Slice Colors:

- Each slice gets unique color automatically
- Format individual slice: Click slice twice → Format Data Point
- Change fill color, add border, apply effects

Exploding Slices:

- Click slice twice to select individual slice
- Drag away from center to explode
- Or Format Data Point → Point Explosion slider (0-100%)
- Use to emphasize important segment

Data Labels:

- Essential for pie charts (show percentages or values)
- Chart Elements (+) → Data Labels → Outside End
- Format Data Labels → Label Options:

Percentage: Most common for pie charts

Value: Actual numbers

Category Name: Slice labels

Leader Lines: Connect labels to slices

Label Position:

Center: Inside slice

Inside End: Near edge inside slice

Outside End: Outside slice with leader line

Best Fit: Excel chooses automatically

Rotation:

- Format Chart Area → Series Options → Angle of first slice
- Rotate pie to position important slice at top (12 o'clock)
- Default: First slice starts at 12 o'clock

Engineering Application - Budget Breakdown:

Project budget pie chart showing percentage allocation:

• Components: 40%

• Labor: 30%

• Testing: 15%

Documentation: 10%

• Contingency: 5%

Best Practices:

- Sort slices by size (largest to smallest) for clarity
- Use contrasting colors for adjacent slices
- Limit to 5-7 slices maximum
- Combine small slices into "Other" category if needed
- Always include data labels with percentages

Scatter (XY) Charts:

Show relationship between two continuous variables. Both axes are value axes (not category).

When to Use:

- Correlation analysis between two variables
- Scientific and engineering data with independent and dependent variables
- Experimental measurements (input vs. output)
- Identifying patterns, trends, or outliers
- Calibration curves
- Characteristic curves (I-V, frequency response)

Key Difference from Line Charts:

- Line Chart: X-axis is category axis (evenly spaced labels)
- Scatter Chart: X-axis is value axis (scaled numerically)
- **Result:** Scatter charts accurately represent X-Y relationships

Scatter Chart Subtypes:

1. Scatter with Only Markers:

- Points only, no connecting lines
- Best for: Showing correlation, identifying patterns
- Use when: No inherent order or connection between points

2. Scatter with Smooth Lines and Markers:

- Points connected with smooth curved lines
- Best for: Showing trend with actual data points visible

3. Scatter with Smooth Lines:

- Smooth curved lines only, no markers
- Best for: Emphasizing overall trend

4. Scatter with Straight Lines and Markers:

- Points connected with straight line segments
- Best for: Showing progression with data points

5. Scatter with Straight Lines:

- Straight line segments only, no markers
- Best for: Connecting sequential measurements

Creating Scatter Chart:

Organize data with X-values (independent variable) in first column

Y-values (dependent variable) in second column Select data range including headers Insert → Scatter Chart → Choose subtype

X-values appear on horizontal axis, Y-values on vertical axis

Important: First column = X-axis, Second column = Y-axis

Example Data - Diode I-V Characteristic:

Result: Scatter chart showing exponential I-V relationship

Voltage (V)	Current (mA)
0.0	0.00
0.2	0.01
0.4	0.15
0.6	2.50
0.7	8.20
0.8	18.50

Adding Trendlines:

Trendlines show overall pattern in data and can display equation and R² value.

Steps:

Select data series in chart

Chart Elements $(+) \rightarrow$ Trendline \rightarrow More Options

Or right-click series → Add Trendline

Format Trendline pane opens

Trendline Types:

• **Linear:** Straight line (y = mx + b)

Best for: Linear relationships

• **Exponential:** Exponential curve (y = ae^bx)

Best for: Exponential growth/decay

• Logarithmic: Logarithmic curve (y = a ln(x) + b)

Best for: Diminishing returns

• **Polynomial:** Curved line $(y = ax^2 + bx + c, or higher order)$

Best for: Data with peaks and valleys

Order: 2-6 (higher = more curves)

Power: Power curve (y = ax^b)

Best for: Proportional relationships

Trendline Options:

- Display Equation on chart: Shows mathematical formula
- **Display R-squared value on chart:** Shows goodness of fit (0-1, closer to 1 = better fit)
- **Set Intercept:** Force line through specific Y-intercept
- Forecast: Extend trendline forward or backward

Engineering Application - Sensor Calibration:

Plot sensor output vs. known input, add linear trendline with equation. Use equation to convert future sensor readings to actual values.

Formatting Scatter Charts:

- Marker style, size, and color for data points
- Axis scales (linear or logarithmic)
- Gridlines for reading values
- Trendline style and color

Editing Data Source:

Change which data is included in chart.

Method 1 - Select Data:

- 1. Select chart
- 2. Chart Design tab \rightarrow Data group \rightarrow Select Data
- 3. Select Data Source dialog opens
- 4. Modify data range, add/remove series, edit labels

Select Data Source Dialog Components:

Chart Data Range:

- Shows current data range
- Click button to select new range in worksheet
- Includes all series and categories

Legend Entries (Series):

- Lists all data series in chart
- Add: Create new series (specify name and values)
- Edit: Modify series name or values
- Remove: Delete series from chart
- **Up/Down Arrows:** Change series order

Horizontal (Category) Axis Labels:

- Edit category labels
- Click Edit to select new range for labels

Switch Row/Column:

- Swap what's plotted as series vs. categories
- Useful when Excel interprets data incorrectly

Method 2 - Drag Data Range:

- 1. Select chart
- 2. Colored border appears around source data in worksheet
- 3. Drag corner handles to expand or contract data range
- 4. Chart updates automatically

Adding Data Series:

Method 1 - Select Data:

- 1. Chart Design \rightarrow Select Data \rightarrow Add
- 2. Edit Series dialog:

Series name: Cell reference or type name

Series values: Select data range

3. Click OK

Method 2 - Copy and Paste:

- 1. Select new data column in worksheet (including header)
- 2. Copy (Ctrl + C)
- 3. Select chart
- 4. Paste (Ctrl + V)
- 5. New series added automatically

Removing Data Series:

- 1. Select series in chart (click bar, line, or legend entry)
- 2. Press Delete
- 3. Or Chart Design \rightarrow Select Data \rightarrow Select series \rightarrow Remove

Editing Series Name:

- 1. Chart Design → Select Data
- 2. Select series \rightarrow Edit
- 3. Edit Series dialog → Series name
- 4. Type new name or select cell reference
- 5. Click OK

Changing Category Labels:

- 1. Chart Design → Select Data
- 2. Horizontal Axis Labels \rightarrow Edit
- 3. Select range containing new labels
- 4. Click OK

Switching Rows and Columns:

When Excel plots data incorrectly (series vs. categories swapped):

- 1. Chart Design tab \rightarrow Data group \rightarrow Switch Row/Column
- Chart reorients data
- 3. Toggle back if needed

Hidden and Empty Cells:

- 1. Chart Design → Select Data → Hidden and Empty Cells
- Choose how to handle:

Gaps: Leave gaps in chart

Zero: Plot as zero value

Connect data points with line: Skip empty cells

3. Show data in hidden rows and columns (checkbox)

Quick Layouts:

Predefined combinations of chart elements for instant professional appearance.

Using Quick Layouts:

- 1. Select chart
- 2. Chart Design tab \rightarrow Chart Layouts group \rightarrow Quick Layout
- 3. Gallery shows layout thumbnails
- 4. Hover to preview
- 5. Click to apply

Layout Elements Included:

- Chart title position
- Axis titles presence and position
- Legend position
- Data labels
- Data table
- Gridlines

Advantages:

- Fast way to add multiple elements
- Professional combinations
- Starting point for further customization

Adding Chart Elements:

Chart Design tab \rightarrow Add Chart Element button provides access to all elements.

Chart Element Options:

Axes:

- Show or hide primary/secondary axes
- Horizontal and vertical

Axis Titles:

- Primary Horizontal
- Primary Vertical
- Secondary (if applicable)

Chart Title:

- Above Chart
- Centered Overlay
- None

Data Labels:

- None, Center, Inside End, Outside End, Data Callout
- More Data Label Options (detailed formatting)

Data Table:

- With Legend Keys (shows series colors)
- No Legend Keys
- Displays source data below chart

Error Bars:

- Show uncertainty or variability in data
- Standard Error, Percentage, Standard Deviation
- Custom values
- Important for scientific/engineering data

Gridlines:

- Primary Major Horizontal/Vertical
- Primary Minor Horizontal/Vertical
- More Gridline Options

Legend:

- Right, Top, Bottom, Left
- None
- More Legend Options

Lines:

- Drop Lines, High-Low Lines, Up/Down Bars
- Series Lines (for stacked charts)
- Specific to certain chart types

Trendline:

- Linear, Exponential, Logarithmic, Polynomial, Power, Moving Average
- More Trendline Options

Up/Down Bars:

- For line charts with multiple series
- Shows difference between series

Chart Templates:

Save customized chart as template for reuse.

Creating Template:

- 1. Format chart with desired appearance
- 2. Right-click chart \rightarrow Save as Template
- 3. Name template
- 4. Save in Templates folder

Using Template:

- 1. Select data
- 2. Insert \rightarrow Recommended Charts \rightarrow All Charts tab
- 3. Templates folder
- 4. Select saved template
- 5. Click OK

Benefits:

- Consistent appearance across multiple charts
- Save time on repetitive formatting
- Maintain organizational standards

Chart Best Practices for Engineering

Design Principles:

Clarity:

- Clear Title: Descriptive, includes key information
- \circ Good: "Capacitor Voltage vs. Time During Charging (R=10k Ω , C=100 μ F)"
- Poor: "Chart 1"
 - ✓ Axis Labels with Units: Always include units in axis titles
- Example: "Voltage (V)", "Time (s)", "Frequency (Hz)"
 - ✓ **Readable Fonts:** Minimum 10-11 pt font size
 - ✓ **Sufficient Contrast:** Dark text on light background or vice versa
 - ✓ **Uncluttered:** Remove unnecessary elements (excessive gridlines, decorations)

Accuracy:

- Appropriate Scale: Start Y-axis at zero for bar/column charts (avoid misleading scaling)
- Linear vs. Logarithmic: Use log scale for data spanning multiple orders of magnitude
- Honest Representation: Don't manipulate scales to exaggerate differences
- Error Bars: Include when showing experimental data with uncertainty

• Significant Figures: Match precision to measurement accuracy

Appropriate Chart Type:

- Comparison: Column or bar chart
- Trend over time: Line chart
- Correlation: Scatter chart with trendline
- Proportion: Pie chart (limited categories)
- **Distribution:** Histogram or box plot

Professional Appearance:

- Consistent Formatting: Same style across all charts in document
- Color Scheme: Professional, coordinated colors (avoid garish combinations)
- Legend: Clear, positioned appropriately
- Gridlines: Subtle (light gray), only if needed for reading values
- White Space: Adequate margins and spacing

Engineering-Specific Guidelines:

Data Integrity:

- Plot actual measured data points (use markers)
- Distinguish between measured data and fitted curves
- Document data source and conditions
- Include sample size or number of measurements

Technical Standards:

- Follow IEEE, ISO, or institutional style guidelines
- Use standard symbols and notation
- Include figure numbers and captions
- Reference charts in text ("as shown in Figure 3")

Axis Considerations:

- Independent Variable: Typically X-axis (horizontal)
- **Dependent Variable:** Typically Y-axis (vertical)
- Multiple Scales: Use secondary axis when comparing different units
- Logarithmic Scales: Common for frequency response, power, gain

Color for Meaning:

- Red: Error, warning, failure
- Green: Pass, success, normal
- Blue: Neutral, information
- Consistent color coding across related charts

Accessibility:

- Readable in black-and-white (test print preview)
- Colorblind-friendly palettes
- Patterns or markers in addition to colors
- High contrast for projection

Common Mistakes to Avoid:

Visual Errors:

- 3D effects (distort perception, avoid unless necessary)
- Excessive decoration (chart junk)
- Too many data series (limit to 3-5 for clarity)
- Pie charts with too many slices (>7)
- Missing or unclear labels

Data Errors:

- Truncated Y-axis (misleading comparisons)
- Inconsistent scales across related charts
- Mixing chart types inappropriately
- Plotting categorical data on scatter chart

Technical Errors:

- Missing units in axis labels
- Incorrect axis assignment (independent vs. dependent)
- No error bars on experimental data
- Unlabeled trendlines or curves

Example 1 - RC Circuit Time Constant

Measurement

Objective: Visualize capacitor charging in RC circuit

Chart Type: Scatter chart with smooth lines and

markers

Key Elements:

• Title: "Capacitor Voltage vs. Time (R=10k Ω ,

C=100 μ F, τ =1s)"

X-axis: "Time (s)"

Y-axis: "Voltage (V)"

- Exponential trendline with equation
- Markers showing actual measurements
- Horizontal reference line at 63.2% (one time constant)

Data:

Time (s)	Voltage (V)
0.0	0.00
0.5	3.16
1.0	4.32
1.5	4.75
2.0	4.91
2.5	4.97
3.0	4.99

Analysis: Chart clearly shows exponential charging characteristic, time constant visible at 63.2% of final voltage.

Example 2 - Component Performance Comparison

Objective: Compare three voltage regulators under

different load conditions

Chart Type: Line chart with markers

Key Elements:

• Title: "Voltage Regulator Performance Under Load"

X-axis: "Load Current (mA)"

Y-axis: "Output Voltage (V)"

• Three series (Reg A, B, C) with different colors and markers

- Legend identifying each regulator
- Horizontal reference line at 5.0V (target voltage)
- Gridlines for reading values

Data:

Load (mA)	Reg A (V)	Reg B (V)	Reg C (V)
0	5.00	5.02	4.98
50	4.98	5.00	4.95
100	4.96	4.98	4.90
150	4.94	4.96	4.83
200	4.92	4.94	4.75

Analysis: Chart shows Regulator B has best load regulation, Regulator C shows significant voltage drop under load.

Example 3 - Power Distribution Analysis

Objective: Show how total power is distributed

among circuit components

Total: 30.0 W

Chart Type: Pie chart

Key Elements:

• Title: "Power Distribution in Embedded System"

• Data labels showing percentages and component names

- Processor slice exploded (largest consumer)
- Professional color scheme
- Total power noted in subtitle or caption

Data:

Component	Power (W)
Processor	15.0
Display	8.0
Memory	3.0
Storage	2.0
Other	2.0

Analysis: Processor consumes 50% of total power, primary target for power optimization.

Example 4 - Frequency Response Measurement Objective: Plot amplifier gain vs. frequency Key Elements:

- Title: "Amplifier Frequency Response"
- X-axis: "Frequency (Hz)" Logarithmic scale
- Y-axis: "Gain (dB)"
- Smooth line connecting measurements
- Markers at measurement points
- Horizontal reference line at -3dB point (cutoff frequency)

Data:

Frequency (Hz)	Gain (dB)
10	38.5
100	40.0
1000	40.0
10000	38.2
100000	28.5
1000000	12.0

Analysis: Logarithmic X-axis essential for frequency data spanning multiple decades. Chart shows flat response in passband, rolloff at high frequencies.

Example 5 - Measurement Statistics

Objective: Compare measurement precision across

three test methods

Chart Type: Column chart with error bars

Key Elements:

• Title: "Measurement Method Comparison (n=20 each)"

• X-axis: "Test Method"

Y-axis: "Measured Voltage (V)"

- Columns showing mean values
- Error bars showing ±1 standard deviation
- Horizontal reference line at 5.0V (true value)
- Target tolerance band (shaded region 4.95-5.05V)

Data:

Method	Mean (V)	Std Dev (V)
Α	5.00	0.05
В	5.02	0.12
С	4.98	0.03

Analysis: Method C shows best precision (smallest error bars) and accuracy (closest to true value).

Key Takeaways:

- Choose chart type based on data and message
- Always include descriptive titles and axis labels with units
- Use appropriate scales (linear vs. logarithmic)
- Add trendlines for correlation analysis
- Include error bars for experimental data
- Maintain professional, consistent formatting
- Test readability in black-and-white
- Reference charts in text with figure numbers

Questions & Answers

"Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them."

Network of centers for regional short study programs in the countries of the Western Balkans

Call: ERASMUS-EDU-2023-CBHE

Project number: 101128813

